Modeling Stochastic Chemical Kinetics on Quantum Computers

Abstract

The Chemical Master Equation (CME) provides a highly accurate, yet extremely resource-intensive representation of a stochastic chemical reaction network and its kinetics due to the exponential scaling of its possible states with the number of reacting species. In this work, we demonstrate how quantum algorithms and hardware can be employed to model stochastic chemical kinetics as described by the CME using the Schlögl Model of a trimolecular reaction network as an illustrative example. To ground our study of the performance of our quantum algorithms, we first determine a range of suitable parameters for constructing the stochastic Schlögl operator in the mono- and bistable regimes of the model using a classical computer and then discuss the appropriateness of our parameter choices for modeling approximate kinetics on a quantum computer. We then apply the Variational Quantum Deflation (VQD) algorithm to evaluate the smallest-magnitude eigenvalues, λ0 and λ1, which describe the transition rates of both the mono- and bi-stable systems, and the Quantum Phase Estimation (QPE) algorithm combined with the Variational Quantum Singular Value Decomposition (VQSVD) algorithm to estimate the zeromode (ground state) of the bistable case. Our quantum computed results from both noisy and noiseless quantum simulations agree within a few percent with the classically computed eigenvalues and zeromode. Altogether, our work outlines a practical path toward the quantum solution of exponentially complex stochastic chemical kinetics problems and other related stochastic differential equations.

Type
Brenda Rubenstein
Brenda Rubenstein
Associate Professor of Chemistry and Physics