Identifying Band Inversions in Topological Materials Using Diffusion Monte Carlo

Abstract

Topological insulators are characterized by insulating bulk states and robust metallic surface states. Band inversion is a hallmark of topological insulators: at time-reversal invariant points in the Brillouin zone, spin-orbit coupling (SOC) induces a swapping of orbital character at the bulk band edges. In this work, we develop a novel method to detect band inversion within continuum quantum Monte Carlo (QMC) methods that can accurately treat the electron correlation and spin-orbit coupling crucial to the physics of topological insulators. Our approach applies a momentum-space-resolved atomic population analysis throughout the first Brillouin zone utilizing the Löwdin method and the one-body reduced density matrix produced with Diffusion Monte Carlo (DMC). We integrate this method into QMCPACK, an open source ab initio QMC package, so that these ground state methods can be used to complement experimental studies and validate prior DFT work on predicting the band structures of correlated topological insulators. We demonstrate this new technique on the topological insulator bismuth telluride, which displays band inversion between its Bi-p and Te-p states at the Γ-point. We show an increase in charge on the bismuth p orbital and a decrease in charge on the tellurium p orbital when comparing band structures with and without SOC. Additionally, we use our method to compare the degree of band inversion present in monolayer Bi2Te3, which has no interlayer van der Waals interactions, to that seen in the bulk. The method presented here will enable future, many-body studies of band inversion that can shed light on the delicate interplay between correlation and topology in correlated topological materials.

Type